(2) · Each operator J, Div, Curl has a 3 dimensional version of the Fundamental Theorem at Calculus (FTC) that goes with it 1) J (=> "Conservation of Energy" (2) Div => Divergence Theorem 3) Curl (=> Stokes Theorem · Recall: FTC says "the integral of a derivative reduces to an undifferentiated function evaluated on the boundary " Simplest Case: Math 21B $\int f'(x) dx = f(b) - f(a)$ undifferentiated function & evaluated on integral of the derivative on [a,b] R the boundrug X = a, b

1) 7: Conservation of Energy (3) $\nabla f \cdot \vec{T} \cdot ds = f(B) - f(B)$ C 2) Div: Divergence Thm A TF.T. B CCC Divergence Thm A TF.T. 3-D VOLUMP SSSDivFdv = SSF.nds 2D Surface Integral 3-Dtriple integral Boundary defined in §15 (Flux) Surface J (3) Curl: Stokes Theorem 2-D Surface N T JJ Curifin des = JF.7 des $\langle \checkmark$ line integral 1-D boundary 2-D surface around closed integral (Flux) Curve C boundary

Ri Our First Generalzation of FTC (7) (1) The FTC associated with the Gradicut: $\nabla f = \begin{pmatrix} 2f & \partial f & \partial f \\ \partial x & \partial y & \partial z \end{pmatrix}$ in put $(f: \mathbb{R}^3 \to \mathbb{R})$ output $\nabla f: \mathbb{R}^3 \to \mathbb{R}^3$ We use the notation $\frac{\partial f}{\partial x} = f_{x} = \partial f =$ We know (Mathzic) The Gradient takes a function f: R³ > R (think of f as giving the temperature f(x) at x = (x, y, z)and assigns to it the vector $\nabla f(x_i y_i z_j = (M, N, P)$ which points in direction of steepest increase of f. The first generalization of FTC involves the Gradients we call it Conservation of Energy

1) 7; Conservation of Energy $\int \nabla f \cdot \vec{T} \, ds = f(B) - f(B)$ We can evaluate the A W. T B Another way to say it: line integral (F.7 ds if we can find an "anti-derivative" f(x) such that $\nabla f(\underline{x}) = \overline{F}(\underline{x}) = (M(\underline{x}), N(\underline{x}), P(\underline{x}))$ at every point z= (x, y, z). In this case $\int \vec{F} \cdot \vec{T} \, dS = F(B) - P(B)$ Defn: We say a vector field $\vec{F} = (M, N, P)$ is conservative if there exists f st $\nabla f = \vec{F}$ Important: Most vector Fields F are NOT Conservative

• Why is FTC-1 true 2 Ans: Chain Rule $\frac{\partial f}{\partial t} f(x(t), \xi(t), \xi(t)) = \frac{\partial f}{\partial t} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}$ $= \nabla f \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right)$ $= \nabla f \cdot \vec{v}(t)$ There fore $\int \vec{F} \cdot \vec{T} \, dS = \int \vec{F} \cdot \vec{V} \, dt = \int \nabla f \cdot \vec{V} \, dt$ $\int a \quad \int a \quad \int a \quad \int a \quad \int a \quad f(x, t_1), y(t_1, z(t_2))$ For C: F(x), a = t = b assuming F Conservative $= \int_{at}^{b} \frac{d}{dt} f(\dot{r}(t)) dt = f(\dot{r}(a)) - f(\dot{r}(b))$ Math ZIB FTC = f(B) - f(A)F(b)=B

Q2: Why is it called Conservation of
Energy?
Example: Newton's Theory of Gravity
Recall: Newton explained the motion of the
planets by assuming the sun was pulling with
an inverse square force:

$$\vec{F} = M_p \vec{a} = -\vec{B} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$$
 Sun
 $\vec{F} = M_p \vec{a} = -\vec{B} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{B} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{B} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s}) = \vec{x}$
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s}) = \vec{x}$
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s}) = \vec{x}$
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s}) = \vec{x}$
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s}) = \vec{x}$
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$ Sun
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s}) = \vec{x}$
 $\vec{F} = M_p \vec{a} = -\vec{E} \frac{M_p M_s}{r^2} \frac{\vec{r}}{r}$
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s}) = \vec{x}$
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s})$
 $\vec{F} = (\vec{x}, \vec{b}, \vec{s})$

(Cont) We prove
$$\nabla \frac{1}{|x|} = -\frac{x}{|x|^3}$$

Calculations involving partial derivatives of $r = |x|$
are done so often it is very convenient
to have a guick way to do them...
For this - note $\frac{\partial r}{\partial x} = \frac{x}{r}$, $\frac{\partial r}{\partial y} = \frac{y}{r}$, $\frac{\partial f}{\partial z} = \frac{x}{r}$
i.e. $\frac{\partial r}{\partial x} = \frac{\partial \sqrt{x^2 + y^2 + z^2}}{\partial x} = \frac{1}{2} \frac{1}{\sqrt{x^2 + y^2 + z^2}} \cdot 2x = \frac{x}{r}$
Thus: $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} r^2 (x_1 + z) = -1 \frac{1}{r^2} \frac{\partial r}{\partial x} = -\frac{1}{r^3} \frac{x}{r^2} = -\frac{x}{r^3}$
Therefore: $\frac{\partial}{\partial x} r = -\frac{x}{r^3}$, $\frac{\partial}{\partial y} r = -\frac{y}{r^3}$, $\frac{\partial}{\partial z} r = -\frac{x}{r^3}$
(implies) $\nabla \frac{1}{r} = -\frac{r}{r^3}$
Conclude:
 $\left[-\frac{\partial M_p M_s}{r} = \frac{r}{r^3} = \frac{\partial M_p M_s}{r} \sqrt{\frac{1}{r}}\right]$

Conclude: Newton's Gravitational (D)
Force Field is Conservative of

$$\vec{F} = -GM_sM_p \frac{\vec{r}}{r^3} = \nabla F = -\nabla P$$

 $f = GM_sM_p \frac{1}{r}$ ($f(x_1b_1^2) = \frac{GM_sM_p}{(x^2+y^2+z^2)}$)
Now we can apply FTC-1
 $\int \vec{F} \cdot \vec{T} \, ds = \int \nabla f \cdot \vec{T} \, ds = f(B) - f(A)$
 e
The work done The change in f
by Gravitation Force = minus the change in
as planet moves along C "potential energy"
• In physics: $P = Potential Energy = -f$
associated with a conservative spore $\vec{F} = \nabla f$
is defined to be $P(x) = -f(x)$
 $c = -\nabla P$

Picture: The change in
potential energy AP = P(B)-P(A)
keeps track of (i.e., is exactly
equal to Sminus the work Oldre by B
Falong the motion.
Q: So why is the "work" defined by a line integral important in the first place ?
Ans: If F is the only force acting on
the planet, I.e., then motion F(t) satisfier
$M_{\rho} \cdot \hat{r}(t) = \hat{F},$
the work done is also equal to the change
in Kinetic energy -
Theorem: If $\vec{F} = -GM_sM_p\frac{r}{r^3}$, and $M_s\vec{r} = F$,
then $\int \vec{F} \cdot \vec{T} ds = \frac{1}{2} M_P V_B^2 - \frac{1}{2} M_P V_A^2 = \Delta K E$
the change in Kinetic Energy

$$\frac{P_{roof} of Theorem: Assume M_{p} \vec{a} = \vec{F}}{(2)}$$
where $\vec{F} = -GM_{s}M_{p}\frac{\hat{r}}{r^{3}}$. Then
$$\int \vec{F} \cdot \vec{T} ds = \int_{a}^{b} \vec{F} \cdot \vec{V} dt = \int_{a}^{b} M_{p} \frac{d\vec{V}}{dt} \cdot \vec{V} dt$$

$$= M_{p} \int_{2}^{b} \frac{d}{dt} (\vec{V} \cdot \vec{V}) dt = \frac{1}{2} M_{p} \vec{V} \cdot \vec{V} \int_{t=a}^{t=b} \frac{1}{2} M_{p} \vec{V} \cdot \vec{V} \int_{t=a}^{t=a} \frac{1}{2} M_{p} V_{b}^{2} - \frac{1}{2} M_{p} V_{A}^{2} = \Delta KE$$

$$\int \vec{V} \cdot \vec{V} = V^{2}$$

$$V(a) = V_{A}, Y(b) = V_{B}$$
(2)

Conclude: If the planet moves according to

$$M_p \hat{a} = \hat{F}$$

where \hat{F} is the gravitational force of the sun
 $\hat{F} = -GM_sM_p \frac{\hat{\Gamma}}{\Gamma^3}$,
then along the motion
 $\Delta KE = \frac{1}{2}M_p V_p^2 - \frac{1}{2}M_p V_n^2 = \int_e \hat{F} \cdot \hat{T} \, dS = -(P(B) - P(B)) = -\Delta PE$
 $OR: \Delta KE + \Delta PE = \Delta Energy = O$
We say energy is conserved all along the
motion. This is Conservation of Energy
Conclude: FTC-1 Suf. $\hat{T} \, dS = \hat{F}(B) - \hat{F}(A)$
is the basis for the physical principle of
Conservation of Energy

planetarg motion known in his lifetime namely Kepler's three laws - by postulating an inverse square force law between neighboring masses. • F=Mpà and F=- GNpNs r led to "three miracles, Keplers three laws • A "4th miracle" is that $\vec{F} = -\nabla P$ P(z)=-GMpMs potential energy So conservation ot energy holds all along a planetary orbit F(t): $P(\vec{r}(t)) + \frac{1}{2}m\vec{v}(t)^2 = constant$ This explains why orbits without a threshold energy remain trapped within the solar system?

B Summary - Newton Unified all the laws of (15)